Mutually independent hamiltonian cycles for the pancake graphs and the star graphs

نویسندگان

  • Cheng-Kuan Lin
  • Jimmy J. M. Tan
  • Hua-Min Huang
  • D. Frank Hsu
  • Lih-Hsing Hsu
چکیده

A hamiltonian cycle C of a graph G is an ordered set 〈u1, u2, . . . , un(G), u1〉 of vertices such that ui 6= uj for i 6= j and ui is adjacent to ui+1 for every i ∈ {1, 2, . . . , n(G) − 1} and un(G) is adjacent to u1, where n(G) is the order of G. The vertex u1 is the starting vertex and ui is the ith vertex of C . Two hamiltonian cycles C1 = 〈u1, u2, . . . , un(G), u1〉 and C2 = 〈v1, v2, . . . , vn(G), v1〉 of G are independent if u1 = v1 and ui 6= vi for every i ∈ {2, 3, . . . , n(G)}. A set of hamiltonian cycles {C1, C2, . . . , Ck} of G is mutually independent if its elements are pairwise independent. Themutually independent hamiltonicity IHC(G) of a graph G is the maximum integer k such that for any vertex u of G there exist kmutually independent hamiltonian cycles of G starting at u. In this paper, the mutually independent hamiltonicity is considered for two families of Cayley graphs, the n-dimensional pancake graphs Pn and the n-dimensional star graphs Sn. It is proven that IHC(P3) = 1, IHC(Pn) = n− 1 if n ≥ 4, IHC(Sn) = n− 2 if n ∈ {3, 4} and IHC(Sn) = n− 1 if n ≥ 5. © 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutually Independent Hamiltonian Cycle of Burnt Pancake Graphs

Let ( ) , G V E = be a graph of order n. A Hamiltonian cycle of G is a cycle contains every vertex in G. Two Hamiltonian cycles 1 1 2 3 1 , , ,... , n C u u u u u = and C2 = 1 2 3 1 , , ,... , n v v v v v of G are independent if 1 1 u v = and i i u v ≠ for 2 i n ≤ ≤ . A set of Hamiltonian cycles { } 1 2 3 , , ,... k C C C C of G is mutually independent if its elements are pairwise independent. ...

متن کامل

Mutually Independent Hamiltonian Cycles of Pancake Networks

A hamiltonian cycle C of G is described as 〈u1, u2, . . . , un(G), u1〉 to emphasize the order of nodes in C. Thus, u1 is the beginning node and ui is the i-th node in C. Two hamiltonian cycles of G beginning at a node x, C1 = 〈u1, u2, . . . , un(G), u1〉 and C2 = 〈v1, v2, . . . , vn(G), v1〉, are independent if x = u1 = v1, and ui 6= vi for every 2 ≤ i ≤ n(G). A set of hamiltonian cycles {C1, C2,...

متن کامل

Cycle embedding in pancake interconnection networks

The ring structure is important for distributed computing, and it is useful to construct a hamiltonian cycle or rings of various length in the network. Kanevsky and Feng [3] proved that all cycles of length l where 6 ≤ l ≤ n!−2 or l = n! can be embedded in the pancake graphs Gn. Later, Senoussi and Lavault [9] presented the embedding of ring of length l, 3 ≤ l ≤ n!, with dilation 2 in the panca...

متن کامل

On cycles in intersection graphs of rings

‎Let $R$ be a commutative ring with non-zero identity. ‎We describe all $C_3$‎- ‎and $C_4$-free intersection graph of non-trivial ideals of $R$ as well as $C_n$-free intersection graph when $R$ is a reduced ring. ‎Also, ‎we shall describe all complete, ‎regular and $n$-claw-free intersection graphs. ‎Finally, ‎we shall prove that almost all Artin rings $R$ have Hamiltonian intersection graphs. ...

متن کامل

An Improved Construction Method for MIHCs on Cycle Composition Networks

Many well-known interconnection networks, such as kary n-cubes, recursive circulant graphs, generalized recursive circulant graphs, circulant graphs and so on, are shown to belong to the family of cycle composition networks. Recently, various studies about mutually independent hamiltonian cycles, abbreviated as MIHC’s, on interconnection networks are published. In this paper, using an improved ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009